
virtana.com © Virtana. All Rights Reserved

The Complete Container Observability
Checklist: What IT Leaders Need to
Look For

virtana.com | Checklist

22

Complete Topology Visibility

What to look for: A solution that provides both technology stack dependencies (vertical topology) and service
interactions (horizontal topology) in a unified view.

Why it’s important: In container environments, understanding both the infrastructure stack and the service-to-
service communications is critical. Containers are ephemeral by nature, making it difficult to track dependencies
without proper visualization tools. Complete topology visibility helps teams quickly understand complex
relationships, significantly reducing troubleshooting time when issues occur.

Topology Generation Without Requiring Code Instrumentation

What to look for: The ability to generate accurate service maps without requiring deep code-level
instrumentation.

Why it’s important: Traditional topology from APM tools typically requires extensive code instrumentation,
which creates maintenance overhead and may not be possible for all applications. In diverse container
environments, the ability to automatically generate topology maps without modifying application code ensures
comprehensive visibility across your entire estate, including third-party and legacy applications.

Mastering Kubernetes observability requires understanding a sophisticated system where traditional monitoring
approaches fall short. Whether you just started learning about containers or are a hardened kubectl expert, it’s
clear that there are a lot of moving pieces, layers, dependencies, and abstractions in the land of Kubernetes.
Coupling this with the ephemerality of containers and the complexity of microservices gives you environments
where traditional monitoring approaches are ineffective, at best.

Migrating from traditional infrastructure to containers? Expanding your container footprint? Enhancing your
container observability strategy?

This checklist serves as a guide for IT leaders and practitioners evaluating Kubernetes observability solutions,
helping to understand key requirements for a platform that will ensure you have reliable, performant, optimized, and
cost-efficient container environments.

Core Observability Capabilities

Containers are ephemeral
by nature, making
it difficult to track

dependencies without
proper visualization tools.

What IT Leaders Need to Look For

Code Level Visibility

What to look for: A platform that provides auto-discovered
transaction visibility along with each transaction’s logging
context, and the ability to drill down into individual methods
and functions to understand latency, error rates, and health
of your business functions.

Why it’s important: While the previous section talks about
topology without code-level instrumentation, the ability to
analyze code-level data is still a key requirement of any
complete observability solution. Deep transaction analysis
at the code level allows engineers and developers to quickly
find offending lines of code in misbehaving or unhealthy
requests, and the accompanying log data allows for a richer
environmental context when diagnosing.

virtana.com | Checklist

33

Comprehensive Telemetry Integration

What to look for: Unified collection and deep, relationship-and-dependency-based correlation of metrics, logs,
configurations and traces from all container ecosystem and supporting infrastructure components.

Why it’s important: Containers and their infrastructure generate massive amounts of telemetry data across
different formats. Without a platform that can collect and correlate metrics, logs, configuration, and distributed
traces in one place, teams waste valuable time switching between tools and manually connecting data points.
Comprehensive telemetry integration provides the context needed to quickly understand and resolve issues.

Kubernetes-Specific Insights

What to look for: Purpose-built monitoring for Kubernetes that natively understands different workload types
(DaemonSets, Jobs, Deployments) at the cluster, node, and workload levels, with the ability to visualize these
relationships in systematic graphs.

Why it’s important: Kubernetes introduces its own complex abstractions and failure modes that general-
purpose monitoring tools don’t adequately address. Each workload type (DaemonSets, Jobs, Deployments) has
unique characteristics and potential failure modes. A solution that natively understands these differences can
provide context-aware observability data and visualization, helping teams quickly understand how orchestration
decisions impact application performance and provide the insights needed to optimize both the application and
the platform.

Automated Anomaly Detection

What to look for: Multiple detection approaches, including AI, machine learning, and knowledge-based patterns
to identify issues before they impact users.

Why it’s important: Container environments generate too many metrics and events for traditional monitoring.
Automated anomaly detection can identify unusual patterns across thousands of containers, their workloads,
and supporting infrastructure services, alerting teams to potential issues before they cause outages. This
proactive approach is essential when managing large-scale containerized applications.

Without a platform that can collect and
correlate metrics, logs, configuration, and

distributed traces in one place, teams
waste valuable time switching between

tools and manually connecting data
points.

Problem Detection and Resolution
Capabilities

virtana.com | Checklist

44

Historical Analysis Capabilities

What to look for: The ability to view past configurations and states, even for containers and infrastructure
resources that no longer exist.

Why it’s important: By the time an issue is reported in container environments, the problematic container
(and even the node!) may have already been terminated and replaced. Time travel capabilities enable teams to
investigate what happened in the past, understand the conditions that led to failures, and prevent similar issues
in the future—even when the original resources are long gone.

Advanced Noise Reduction

What to look for: Intelligent alert correlation and filtering that reduces alert fatigue by grouping related issues,
suppressing redundant notifications, and prioritizing alerts based on business impact.

Why it’s important: Container environments can generate thousands of alerts daily, overwhelming teams with
notification noise. Advanced noise reduction capabilities ensure that teams focus only on actionable information
rather than drowning in redundant alerts. This targeted approach dramatically improves operational efficiency,
allowing engineers to focus on true issues rather than chasing false positives or duplicate notifications for the same
root cause.

 Advanced RCA
dramatically reduces

mean time to resolution
by pinpointing the exact
source of problems, even

when the triggering
container has already

been replaced.

Advanced Root Cause Analysis

What to look for: Automated investigation capabilities that
can determine the source of issues across complex container
dependencies.

Why it’s important: In containerized environments, a single
issue can generate alerts across dozens of entities. Without
automated root cause analysis, teams waste hours in war
rooms trying to correlate symptoms with causes. Advanced
RCA dramatically reduces mean time to resolution by
pinpointing the exact source of problems, even when the
triggering container has already been replaced.

virtana.com | Checklist

55

Deployment and Integration

Deployment Flexibility

What to look for: Support for SaaS, on-premises, and
private cloud deployment models.

Why it’s important: Organizations have different
requirements regarding data residency, security, and
operational models. Deployment flexibility ensures that
your observability solution can adapt to your specific needs,
whether you’re all-in on the cloud, maintaining on-premises
infrastructure, or operating in a hybrid model.

Open-Source Integration

What to look for: First-class support for open-source telemetry collectors and observability standards.

Why it’s important: Many organizations have already invested in open-source observability tools like
Prometheus, Grafana, or OpenTelemetry. A platform that treats these data sources and their collection
mechanisms as first-class citizens rather than afterthoughts allows you to leverage existing investments
while extending capabilities. This approach prevents vendor lock-in and provides more freedom to evolve your
observability strategy over time.

Rapid Deployment and CI/CD Integration

What to look for: The ability to be up and running in a cluster in as little as one minute, with seamless
integration into your organization’s CI/CD pipeline tools like ArgoCD, Terraform, Jenkins, or GitLab.

Why it’s important: Traditional monitoring tools often require complex setup processes that can take days
or weeks. In fast-moving container environments, this delay is unacceptable. Modern organizations deploy
workloads through CI/CD pipelines using tools like ArgoCD, and your observability solution should honor the
same practices. This ensures that monitoring is deployed alongside applications automatically, maintaining
consistency between environments and eliminating manual configuration steps that can lead to gaps in visibility.

Architecture validation
ensures that what’s

running in production
matches what was

designed, helping teams
maintain control over
increasingly complex

systems.

virtana.com | Checklist

66

AIOps Capabilities

What to look for: The ability to ingest and correlate data from third-party tools without duplicating data
storage.

Why it’s important: Most organizations have existing investments in other monitoring tools. The ability
to integrate with these platforms for additional context while avoiding data duplication reduces costs and
complexity. This approach provides a unified view of your environment while respecting your existing technology
choices.

Architecture Validation

What to look for: Runtime validation that confirms applications are behaving as architected.

Why it’s important: With container environments constantly and perpetually changing, implementations
often drift from the intended architecture. This can lead to security risks, performance issues, and maintenance
challenges. Architecture validation ensures that what’s running in production matches what was designed,
helping teams maintain control over increasingly complex systems.

Advanced Capabilities

Resource Utilization Optimization

What to look for: Identification of under/over-allocated resources and right-sizing recommendations.

Why it’s important: Container environments can quickly become inefficient without proper oversight.
Resources that are over-allocated waste money, while under-allocated resources risk application performance
and stability. Optimization tools help teams balance cost and performance by identifying precisely where
adjustments are needed across their entire container estate.

Simple, Transparent Pricing

What to look for: Pricing based on entity counts rather than data volume.

Why it’s important: Container environments generate enormous amounts of telemetry data, making volume-
based pricing models unpredictable and potentially very expensive. Entity-based pricing provides cost
predictability, allowing teams to instrument everything without fear of surprise bills. This approach aligns costs
with the value received rather than penalizing you for collecting more data.

virtana.com | Solution Brief

7

virtana.com | Solution Brief

7

©2025 Virtana. All rights reserved. Virtana is a trademark or registered trademark in the United States and/or in other
countries. All other trademarks and trade names are the property of their respective holders. [0425-01]

 +1-408-579-4000 | info@virtana.com | virtana.com

The ideal platform should help you solve
immediate issues and provide the insights

needed to continuously improve your
container infrastructure and applications.

Look for solutions that combine deep
technical capabilities with ease of use and

clear business value.

Selecting the right container observability platform is critical for maintaining the reliability, performance, and
efficiency of modern containerized environments. By evaluating potential solutions against this focused checklist,
you can ensure you’re choosing a platform that provides the essential capabilities needed for effective container
monitoring and management.

The ideal platform should help you solve immediate issues and provide the insights needed to continuously improve
your container infrastructure and applications. Look for solutions that combine deep technical capabilities with ease
of use and clear business value.

At Virtana, we’ve built our container observability platform with these criteria in mind, leveraging the best of
open source along with advanced capabilities to deliver a solution that meets the needs of modern containerized
environments. We invite you to see how our approach can help your organization achieve better reliability, faster
problem resolution, and optimized resource utilization.

Getting Started

https://www.linkedin.com/company/virtanacorps
https://www.youtube.com/c/Virtana
https://X.com/VirtanaCorp

